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(57) ABSTRACT

In an embodiment, a processor includes a plurality of cores
each to independently execute instructions, a cache memory
including a plurality of portions distributed across a die of the
processor, a plurality of sleep circuits each coupled to one of
the portions of the cache memory, and at least one sleep
control logic coupled to the cache memory portions to
dynamically determine a sleep setting independently for each
of the sleep circuits and to enable the corresponding sleep
circuit to maintain the corresponding cache memory portion
at a retention voltage. Other embodiments are described and
claimed.
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ADAPTIVELY CONTROLLING LOW POWER
MODE OPERATION FOR A CACHE
MEMORY

TECHNICAL FIELD

Embodiments relate to power management of a system,
and more particularly to power management for a cache
memory of a multicore processor.

BACKGROUND

Advances in semiconductor processing and logic design
have permitted an increase in the amount of logic that may be
present on integrated circuit devices. As a result, computer
system configurations have evolved from a single or multiple
integrated circuits in a system to multiple hardware threads,
multiple cores, multiple devices, and/or complete systems on
individual integrated circuits. Additionally, as the density of
integrated circuits has grown, the power requirements for
computing systems (from embedded systems to servers) have
also escalated. Furthermore, software inefficiencies, and its
requirements of hardware, have also caused an increase in
computing device energy consumption. In fact, some studies
indicate that computing devices consume a sizeable percent-
age of the entire electricity supply for a country, such as the
United States of America. As a result, there is a vital need for
energy efficiency and conservation associated with integrated
circuits. These needs will increase as servers, desktop com-
puters, notebooks, Ultrabooks™, tablets, mobile phones,
processors, embedded systems, etc. become even more preva-
lent (from inclusion in the typical computer, automobiles, and
televisions to biotechnology).

A cache memory as may be used in a processor or other-
wise within a system achieves leakage power reduction by
putting un-accessed portions of the cache memory in a low
power or sleep state by reducing a local voltage in a retention
mode. This is accomplished by a series of switches inserted
between the portion of the cache memory itself and a power
supply. The number of switches that are turned on is modu-
lated to achieve the desired voltage droop. The sleep setting of
these switches is a function of the process, temperature and
operating voltage. At high operating voltages, the sleep volt-
age droop may be higher than at lower operating voltages,
while at even lower operating voltages (close to a retention
voltage) the sleep function is disabled altogether, as the local
voltage supply cannot drop below the retention voltage value.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a system in accordance with
one embodiment of the present invention.

FIG.21s a flow diagram of ahigh level view of amethod for
performing calculations for controlling power consumption
of a cache portion in accordance with an embodiment of the
present invention.

FIG. 3 is a flow diagram of a method for determining an
optimal sleep setting in accordance with an embodiment of
the present invention.

FIG. 4 is a block diagram of a sleep circuit in accordance
with an embodiment of the present invention.

FIG. 5 is a flow diagram of a method for controlling a sleep
circuit for a cache portion in accordance with an embodiment.

FIG. 6 is a block diagram of a processor in accordance with
an embodiment of the present invention.
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FIG. 7 is a block diagram of a multi-domain processor in
accordance with another embodiment of the present inven-
tion.

FIG. 8 is a block diagram of a processor including multiple
cores in accordance with an embodiment of the present inven-
tion.

FIG. 9 is ablock diagram of a system in accordance with an
embodiment of the present invention.

FIG. 10 is a block diagram of a processor in accordance
with another embodiment of the present invention.

DETAILED DESCRIPTION

Embodiments may dynamically and independently deter-
mine an optimal sleep setting for a plurality of sleep circuits
each associated with a corresponding cache memory portion,
such as distributed portions of a shared cache memory of a
multicore processor. More specifically, an optimal sleep set-
ting may be calculated for each individual cache portion (e.g.,
cache slice) and driven to the respective portions. At a high
level, the technique includes calculation of local process,
voltage and temperature conditions for each cache slice, and
then use of these conditions to calculate sleep settings inde-
pendently and dynamically for each sleep circuit that maxi-
mizes the leakage savings for each slice.

Referring now to FIG. 1, shown is a block diagram of a
portion of a system in accordance with an embodiment of the
present invention. As shown in FIG. 1, system 100 may
include various components, including a processor 110 which
as shown is a multicore processor. Processor 110 may be
coupled to a power supply 150 via an external voltage regu-
lator 160, which may perform a first voltage conversion to
provide a primary regulated voltage to processor 110.

As seen, processor 110 may be a single die processor
including multiple cores 120,-120,,. In addition, each core
may be associated with an integrated voltage regulator (IVR)
125 -125, which receives the primary regulated voltage and
generates an operating voltage to be provided to one or more
agents of the processor associated with the IVR. Accordingly,
an IVR implementation may be provided to allow for fine-
grained control of voltage and thus power and performance of
each individual core. As such, each core can operate at an
independent voltage and frequency, enabling great flexibility
and affording wide opportunities for balancing power con-
sumption with performance.

Still referring to FIG. 1, additional components may be
present within the processor including an input/output inter-
face 132, another interface 134, and an integrated memory
controller 136. As seen, each of these components may be
powered by another integrated voltage regulator 125_. In one
embodiment, interface 132 may be in accordance with the
Intel® Quick Path Interconnect (QPI) protocol, which pro-
vides for point-to-point (PtP) links in a cache coherent pro-
tocol that includes multiple layers including a physical layer,
a link layer and a protocol layer. In turn, interface 134 may be
in accordance with a Peripheral Component Interconnect
Express (PCle™) specification, e.g., the PCI Express™
Specification Base Specification version 2.0 (published Jan.
17, 2007).

Also shown is a power control unit (PCU) 138, which may
include hardware, software and/or firmware to perform
power management operations with regard to processor 110.
As seen, PCU 138 provides control information to external
voltage regulator 160 via a digital interface to cause the volt-
age regulator to generate the appropriate regulated voltage.
PCU 138 also provides control information to IVRs 125 via
another digital interface to control the operating voltage gen-
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erated (or to cause a corresponding IVR to be disabled in a
low power mode). In various embodiments, PCU 138 may
include logic to dynamically and independently calculate and
control sleep settings for sleep circuitry associated with dif-
ferent cache memory portions.

While not shown for ease of illustration, understand that
additional components may be present within processor 110
such as uncore logic, and other components such as internal
memories, e.g., one or more levels of a cache memory hier-
archy and so forth. Furthermore, while shown in the imple-
mentation of FIG. 1 with an integrated voltage regulator,
embodiments are not so limited.

Although the following embodiments are described with
reference to energy conservation and energy efficiency in
specific integrated circuits, such as in computing platforms or
processors, other embodiments are applicable to other types
of integrated circuits and logic devices. Similar techniques
and teachings of embodiments described herein may be
applied to other types of circuits or semiconductor devices
that may also benefit from better energy efficiency and energy
conservation. For example, the disclosed embodiments are
not limited to any particular type of computer systems, and
may be also used in other devices, such as handheld devices,
systems on chip (SoCs), and embedded applications. Some
examples of handheld devices include cellular phones, Inter-
net protocol devices, digital cameras, personal digital assis-
tants (PDAs), and handheld PCs. Embedded applications
typically include a microcontroller, a digital signal processor
(DSP), network computers (NetPC), set-top boxes, network
hubs, wide area network (WAN) switches, or any other sys-
tem that can perform the functions and operations taught
below. Moreover, the apparatus', methods, and systems
described herein are not limited to physical computing
devices, but may also relate to software optimizations for
energy conservation and efficiency. As will become readily
apparent in the description below, the embodiments of meth-
ods, apparatus', and systems described herein (whether in
reference to hardware, firmware, software, or a combination
thereof) are vital to a ‘green technology’ future, such as for
power conservation and energy efficiency in products that
encompass a large portion of the US economy.

Note that the dynamic and independent cache memory low
power calculations and control described herein may be inde-
pendent of and complementary to an operating system (OS)-
based mechanism, such as the Advanced Configuration and
Platform Interface (ACPI) standard (e.g., Rev. 3.0b, pub-
lished Oct. 10, 2006). According to ACPI, a processor can
operate at various performance states or levels, namely from
PO to PN. In general, the P1 performance state may corre-
spond to the highest guaranteed performance state that can be
requested by an OS. In addition to this P1 state, the OS can
further request a higher performance state, namely a PO state.
This PO state may thus be an opportunistic or turbo mode state
in which, when power and/or thermal budget is available,
processor hardware can configure the processor or at least
portions thereof to operate at a higher than guaranteed fre-
quency. In many implementations a processor can include
multiple so-called bin frequencies above the P1 guaranteed
maximum frequency, exceeding to a maximum peak fre-
quency of the particular processor, as fused or otherwise
written into the processor during manufacture. In addition,
according to ACPI, a processor can operate at various power
states or levels. With regard to power states, ACPI specifies
different power consumption states, generally referred to as
C-states, CO, C1 to Cn states. When a core is active, it runs at
a CO0 state, and when the core is idle it may be placed in a core
low power state, also called a core non-zero C-state (e.g.,
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C1-C6 states), with each C-state being at a lower power
consumption level (such that C6 is a deeper low power state
than C1, and so forth).

To be able to enter into a sleep state for a cache memory, a
supply voltage provided to the cache memory is in excess of
a sleep threshold voltage: if the supply voltage exceeds this
threshold, the sleep function is enabled and if it is below this
voltage, a sleep function is disabled. Note that the sleep
setting is a strong function of temperature, since the sleep
voltage droop across a sleep circuit is determined by the total
leakage of the cache memory and the resistance of the sleep
circuit as enabled. Finally, the sleep setting varies from die to
die (and as described below across a die), depending on
process corner within-die variations.

In large server processors, shared cache memory sub-ar-
rays or slices are distributed all over the die, with a portion of
the cache associated with each processor core. Since the die
area is relatively large, it is difficult to determine a sleep
setting that is optimal for all cache slices on the die. For
example, one corner of the die can have a faster process than
the opposite corner, due to within-die variations. Further,
temperature can vary by 20-30° Celsius across the die, which
impacts the voltage droop for the sleep function. The cache
voltage can also change under normal operation, which com-
pels an adjustment in the sleep settings. Therefore, having a
conventional single fuse-based static sleep setting does not
maximize power savings.

Thus embodiments realize an adaptive sleep mode in
which sleep settings are calculated by a control logic such as
a power controller of the processor. These sleep settings are
independently and dynamically calculated for each cache
slice to compensate for process, voltage and temperature
variations across the die, enabling each cache slice to enter
into sleep states closer to the retention voltage for that par-
ticular slice and therefore save leakage power.

In an embodiment the power controller dynamically cal-
culates a local operating voltage (supply voltage minus the
droop across a corresponding sleep circuit) and sleep strength
setting for each cache slice. In many embodiments, setting the
granularity to a slice basis is a good trade-off to account for
process, voltage and temperature variations across the die. Of
course in other embodiments, smaller granularity (like
groups of sub-arrays within each slice) calculations and inde-
pendent control may be realized.

The retention voltage and the actual operating voltage may
be used to determine if the sleep function is to be enabled for
agiven cache portion. In an embodiment, the PCU determines
the retention voltage for each cache slice using the local
process, voltage and temperature for each cache slice.

Referring now to FIG. 2, shown is a flow diagram of a high
level view of a method for performing calculations for con-
trolling power consumption of a cache portion in accordance
with an embodiment of the present invention. As shown in
FIG. 2, method 200 may be performed by a power controller
of a processor such as a PCU or other control logic. For
example, in other embodiments, rather than a central power
controller of a processor, programmable logic such as a finite
state machine may be replicated in multiple locations (such as
within each core, cache memory or other agent) to allow a
multicore processor to perform the method of FIG. 2 in a
distributed manner.

As shown in FIG. 2, method 200 may be used to dynami-
cally determine a retention voltage and sleep settings for a
corresponding sleep circuit for a given portion of a cache
memory such as a shared cache memory. For example, in an
embodiment method 200 may be performed for each slice of
a shared cache memory. Of course, different granularities are
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possible and the control method may be performed on a
sub-slice basis such as for a given sub-array of the slice (or on
a coarser granularity such as for multiple slices). Further-
more, while a distributed cache memory having a slice-based
configuration is described herein for example purposes,
understand that a distributed cache memory may have differ-
ent portions distributed across a die in a variety of different
manners.

In general, method 200 may be used to determine a reten-
tion voltage for each cache portion using local process, volt-
age and temperature (P,V,T) for each cache portion. First, a
process determination 210, a temperature determination 220,
and a voltage determination 230 may occur. Note that these
determinations may be made in any order and can be made at
different time intervals. For example, process determination
210 may be calculated for each cache slice to enable deter-
mination of variations across die once at power on and its
corresponding determined value stored for later usage. Tem-
perature determination 220 and voltage determination 230
may be performed periodically.

For process determination 210, which may be performed
on power on of a system including a processor, each of mul-
tiple test (e.g., process) sensors associated with a slice may be
read (block 212). For example, a given cache slice may
include multiple ring oscillators located at various positions
throughout the slice. As an example, each slice may include
between approximately 25 and 50 ring oscillators. When
enabled during process determination 210, each of these ring
oscillators may operate, generating a clock signal at a given
frequency. These corresponding clock signal frequencies are
input into a counter and its output may then be provided, e.g.,
via a serial bus to the PCU. Next, at block 214 the process
sensors may be averaged depending on their physical location
with respect to each cache slice. Understand that in other
embodiments, instead of a ring oscillator another type of
process sensor such as a critical path replica may be used.

Next, based on the average frequency determined for the
given slice, a process corner for the slice may be determined
(block 216). As an example, a lookup table may be present in
the PCU that includes a plurality of entries each associating a
corresponding operating frequency with a given process cor-
ner. For example, if the operating frequency (as determined in
block 214) is higher than a predetermined value, the process
corner may be considered to be of a fast process corner and
correspondingly, ifthe operating frequency for a given sliceis
less than a certain value, the cache slice may be considered to
be of a slow process corner. Although not shown for ease of
illustration, understand that the determined process corner
value may be stored in an appropriate storage such as a table
storage in a memory of or associated with PCU. This process
corner memory may include a plurality of entries each asso-
ciated with a given cache slice and each identifying a process
corner value for the corresponding cache slice (e.g., fast pro-
cess corner, typical process corner, slow process corner, or
intermediate points in between). Note that process determi-
nation 210 may be performed for every cache slice, e.g., on
power up. Of course in other embodiments, the process corner
determination may take place at other times as appropriate.

Still referring to FIG. 2, temperature determination 220
may be performed on a more regular interval, e.g., every 1
millisecond (ms). To enable determination of variations
across die, temperature determination 220 may be performed
for each cache slice. First, at block 222 local temperature
sensors may be read in neighboring cores. That is, in an
example embodiment temperature sensors may be located in
cores associated with slices, rather than within the cache
slices themselves. Of course in another implementation, one
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or more local temperature sensors may be present within the
cache slices themselves. In any event, these local temperature
sensors are read and at block 224 the values are used to
generate an average temperature value. Note that this average
temperature value may take into account different weightings
for the temperature values based on proximity of a given core
to the corresponding slice. From this average, at block 226 a
local temperature may be determined. As above with the
process determination the temperature determination may be
made for each cache slice. And as with the process corner
determination the local thermal values may be stored in a
storage, e.g., a table storage implemented as a thermal
memory including a plurality of entries each associated with
a given cache slice and each identifying a temperature value
for the corresponding cache slice.

Still referring to FIG. 2, voltage determination 230 also
may be performed. In an embodiment, voltage determination
230 may be performed each time an operating voltage
changes for a given cache slice. In general, voltage determi-
nation 230 may be performed by determining a local operat-
ing voltage. This determination may be made, e.g., based on
the PCU’s knowledge of the operating voltage it instructed
for a given slice. Alternately, a local voltage sensor circuit can
be used and a digital voltage output is transmitted to the PCU.
Accordingly, at this point process, temperature and voltage
information is available for each cache slice.

Next, a retention voltage may be calculated for each cache
slice based on this process, voltage and temperature informa-
tion (block 240). Furthermore, an optimal sleep setting for a
sleep circuit associated with each cache slice may be deter-
mined at block 250. Here, an optimal sleep strength is calcu-
lated using the same process, temperature and voltage values
calculated before. In one embodiment, there are 16 sleep
settings (via a 4-bit control signal) that can be used to control
an operating voltage provided to the corresponding cache
portion.

Note that the retention voltage determination and sleep
setting determination may be performed in an iterative man-
ner until the optimal sleep setting value is obtained. Further-
more, understand that the temperature and voltage determi-
nations may continually be updated, e.g., according to a
predetermined interval (e.g., 1 ms) for the temperature deter-
mination, and anytime an operating voltage change occurs for
the voltage determination. Although shown at this high level
in the embodiment of FIG. 2, understand the scope of the
present invention is not limited in this regard.

Referring now to FIG. 3, shown is a flow diagram of a
method for determining an optimal sleep setting for a sleep
circuit in accordance with an embodiment of the present
invention. As shown in FIG. 3, method 260 may similarly be
performed by a power controller such as a PCU or other
programmable logic, e.g., associated with a given cache por-
tion. Method 260 begins by calculating an operating voltage
and retention voltage (block 265). Here the calculation of
operating voltage and retention voltage may be performed
with the sleep circuit disabled. In general the operating volt-
age provided to the cache portion may be the same as the
operating voltage for the corresponding processor core, e.g.,
Vee. The retention voltage is thus initialized with all sleep
transistors turned off (no sleep).

Still referring to FIG. 3, at diamond 270 it may be deter-
mined whether the operating voltage is greater than a thresh-
old value. In an embodiment, this threshold value may corre-
spond to a retention voltage value and a margin. This
threshold value ensures that the operating voltage for the
cache slice is high enough to support sleep (note that to
accurately retain information stored in the cache memory, the
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operating voltage exceeds the retention voltage by a program-
mable margin). As an example, this margin may be between
approximately 30 and 50 millivolts, in an embodiment.

Ifit is determined that the operating voltage is greater than
this threshold value, control passes to block 275 where a sleep
setting value may be incremented (e.g., by one step). This
sleep setting value may be a digital code that is used to control
a sleep circuit, details of which are described further below.
By implementing this sleep setting, at least a portion of the
sleep circuit is enabled to a create a sleep droop in the oper-
ating voltage, causing the operating voltage for the cache
memory portion to be less than the operating voltage provided
to the core/slice. In one embodiment, for a given sleep circuit
the PCU starts from the weakest setting and incrementally
increases the sleep setting until the actual operating voltage
provided to the cache portion (after the effect of the at least
partially enabled sleep circuit) is just above the retention
voltage (within a programmable margin). The retention volt-
age is a function of the sleep setting, process, and temperature
and may be calculated iteratively for each new sleep setting.
Due to this change in sleep setting, a new retention voltage
and operating voltage is determined at block 280. Thereafter,
control passes back to diamond 270, discussed above. The
local operating voltage for a cache slice is the main supply
voltage (known to the PCU) minus the voltage droop on the
sleep circuit (calculated from a table lookup based on the
local PVT data, in an embodiment) and may be in accordance
with the following equations:

SRAM_VCC=VCC-SleepTransDroop(SleepStrength,
Process,Temp)

SRAM_VCC=VbaseRetention(Voltage,Process, Temp)

where VCC is the supply voltage, SRAM_VCC is the oper-
ating voltage of the cache memory portion, SleepTransDroop
is the voltage droop across the sleep circuit, and VbaseReten-
tion is the minimum retention voltage (taking into account
some margin).

Still referring to FIG. 3, if instead it is determined at dia-
mond 270 that the operating voltage is not greater than the
threshold value, control passes to block 285. There, the sleep
setting value may be decremented (block 285). With a decre-
mented sleep setting, less of the sleep circuit is enabled and as
such, a greater operating voltage applied to the cache slice is
realized. And at block 290 a new retention voltage and oper-
ating voltage may be determined. Finally, at block 295 if the
sleep setting is at its lowest value (a disabled sleep value) a
pause state may occur to allow conditions to potentially
change. For example, such a change can be a new operating
voltage (which is triggered by the PCU) or a large local
temperature change (which is monitored by the PCU). Under-
stand that while shown with this high level view in the
embodiment of FIG. 3, the scope of the present invention is
not limited in this regard.

In another implementation a logic state machine to imple-
ment the sleep setting determination may be configured in
hardware in each cache slice for processors that do not have a
PCU (like many SoC designs). In either event, instead of
using a single set of static sleep settings to control all sleep
circuits, to reduce cache memory leakage independent adap-
tive settings are used for each sleep circuit to maximize power
savings in the face of increasing PVT variations across the
die.

In one embodiment, dynamic sleep settings are provided to
a sleep circuit such as shown in FIG. 4, which is a block
diagram of a sleep circuit in accordance with an embodiment
of the present invention. As shown in FIG. 4, circuit 300 is a
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sleep circuit that includes a plurality of transistor legs 310,-
310,,, each including one or more transistors, e.g., metal oxide
semiconductor field effect transistors (MOSFETs). In the
embodiment shown leg 310, includes PMOS devices P, -P,.,
leg 310, includes PMOS devices P,-P,,, leg 310, includes
PMOS devices P,,-P,, and leg 310,, includes PMOS devices
P,,;-P,,. A similar scheme may be implemented using NMOS
devices. By using different amounts of transistors in each leg,
finer granularities of resistance may be provided by way of
the sleep circuit. As seen, each of these transistors of the
transistor legs are controlled by a control signal output by a
multiplexer 330. More specifically, multiplexer 330 receives
incoming sleep settings, e.g., in the form of a digital code,
namely a four-bit sleep transistor setting (ST_Setting<3:0>).
Furthermore, multiplexer 330 receives a static fuse value
which may be a single global fixed static value, which is
stored into the processor during manufacturing testing based
on characterization or in another manufacturing stage. Mul-
tiplexer 330 may be controlled, e.g., by the PCU to provide
either this static fuse setting or an adaptive sleep setting value,
generated e.g., by the PCU or by a logic state machine asso-
ciated with the cache portion.

Thus based on control of these transistor legs, a sleep
transistor droop voltage is effected, thus reducing the supply
voltage VCC at a supply voltage node to a lower operating
voltage, SRAM_VCC, at a cache operating voltage node, to
be provided to a cache memory array 345 which corresponds
to a cache slice. In general, when controlled to be in a sleep
state, the sleep setting output by multiplexer 330 controls
sleep circuit 300 and causes this operating voltage to be ata
level at least equal to a retention voltage.

Note further in FIG. 4 the presence of a bypass circuit 320.
Bypass circuit 320 includes a decoder 325 coupled to receive
the sleep setting output by multiplexer 330. When this sleep
setting is of a particular code (e.g., all zeros), indicating that
no sleep setting is to be provided, decoder 325 provides a
control signal to enable a transistor PO (which in an embodi-
ment may be a much larger size than the transistors of tran-
sistor legs 310) to provide a short circuit between the supply
voltage node Vec and the cache operating voltage node
coupled to cache memory array 345, thus providing a fast path
to enable the full operating voltage to be provided to the cache
memory when the cache memory is active (e.g., performing
read and/or write operations). Understand that while shown
with the particular implementation in the embodiment of F1G.
4, alternatives are possible.

In an embodiment, the PCU can be coupled via intermedi-
ate agents such as repeater stations to a corresponding power
management agent within each tile of a multicore processor,
where each tile includes one or more cores, a corresponding
cache portion and other circuitry associated with the core.
Communications may be made by the PCU via a serial bus
such that information for a particular tile can be communi-
cated by providing an address for the corresponding power
management agent and following that address with message
information. For purposes of discussion herein, understand
that for each tile the PCU may calculate an appropriate sleep
setting dynamically and independently, and via this serial bus
communicate the sleep setting as data following an address
for a particular power management agent. Once received by
the power management agent, the sleep setting is provided to
a corresponding sleep circuit, e.g., via an intervening multi-
plexer such as described above with regard to FIG. 4. In an
embodiment, the PCU staggers communication of changes in
sleep settings across groups of cores, in order to avoid creat-
ing di/dt events.



US 9,335,814 B2

9

The power reduction benefits using an embodiment may be
realized by the ability to adjust sleep settings independently
and adaptively for each cache slice (slowly, butinreal time) to
track local temperature changes. Embodiments may realize
substantial power savings in a multicore processor with a
distributed shared cache memory having portions with inde-
pendently controllable operating voltages as described
herein. Embodiments may implement a PCU-driven adaptive
leakage reduction technique that optimally configures sleep
circuits associated with each cache slice to maximize the
leakage savings for the local process, voltage and temperature
conditions.

Referring now to FIG. 5, shown is a flow diagram of a
method for controlling a sleep circuit for a cache portion in
accordance with an embodiment. In the embodiment of FIG.
5, method 350 may be performed by a PCU for control of a
single sleep circuit associated with one cache portion. Under-
stand that this method may be performed for each such sleep
circuit associated with the different cache portions. Of course
in other embodiments, other logic such as distributed logic or
other hardware associated with each cache portion may per-
form the method.

In FIG. 5, method 350 begins by determining whether a
cache portion is active (diamond 355). In an embodiment this
determination may be based on whether a read, write or other
access to the cache portion has occurred within a predeter-
mined time interval. For example, a timer may be associated
with each cache portion to count inactivity duration such that
upon expiration of the timer, the cache portion may be con-
sidered to be inactive. If the cache portion is active, method
350 concludes as a retention voltage would be insufficient to
power the cache memory for active operations. Otherwise,
control passes next to diamond 360 where it can be deter-
mined whether the sleep circuit is to be controlled dynami-
cally or statically. As described above, a single global static
sleep setting may be present, e.g., via a fuse value, in addition
to the dynamic setting determined as described herein. This
determination of static or dynamic control may be based, e.g.,
on a setting provided by way of system software, e.g., BIOS,
that in turn may be under user control. Of course in other
embodiments the static/dynamic determination may be
based, e.g., on processor activity or so forth.

If dynamic control is indicated, control passes to block 365
where a dynamically determined optimal sleep setting may be
communicated along with a dynamic control signal to a
power management agent associated with the cache portion,
e.g., to enable control of a multiplexer or other selection
circuitry associated with the sleep circuit to provide the
dynamic sleep setting to the sleep circuit. Otherwise, at block
370 when static control is indicated, a static optimal sleep
setting (e.g., originating from fuses or a static setting deter-
mined by the PCU) may be communicated along with a static
control signal to the power management agent, e.g., to enable
control of a multiplexer or other selection circuitry associated
with the sleep circuit to provide the static sleep setting to the
sleep circuit.

From both of' blocks 365 and 370 control passes to diamond
375 to determine whether a change in temperature or operat-
ing voltage has occurred. If so, control passes to block 380 for
arecalculation of an optimal sleep setting, as described herein
and method 350 may again proceed. If no such change is
determined, next it can be determined whether the cache
portion is to be activated (diamond 385). This determination
may be based upon an indication that cache activity has been
requested or is about to occur for the cache portion. If so,
control passes to block 390 where a sleep disable command is
communicated to the power management agent. This sleep
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disable command clears the sleep setting provided, causing
the full operating voltage to be provided to the cache memory,
thus raising the voltage from a retention voltage to a sufficient
operating voltage to enable cache access operations to occur.
Although described at this high level in the embodiment of
FIG. 5, understand the scope of the present invention is not
limited in this regard.

Embodiments can be implemented in processors for vari-
ous markets including server processors, desktop processors,
mobile processors and so forth. Referring now to FIG. 6,
shown is a block diagram of a processor in accordance with an
embodiment of the present invention. As shown in FIG. 6,
processor 400 may be a multicore processor including a plu-
rality of cores 410 ,,-410,,. In one embodiment, each such core
may be of an independent power domain and can be config-
ured to enter and exit active states and/or maximum perfor-
mance states based on workload. The various cores may be
coupled via an interconnect 415 to a system agent or uncore
420 that includes various components. As seen, the uncore
420 may include a shared cache 430 which may be a last level
cache, and which may be distributed so that individual cache
slices are located in close proximity to a corresponding core.
In addition, the uncore may include an integrated memory
controller 440, various interfaces 450 and a power control
unit 455. In various embodiments, power control unit 455
may include an adaptive cache memory low power control
logic 459 in accordance with an embodiment of the present
invention. Using this logic, independent and dynamic optimal
sleep settings can be determined and communicated to cor-
responding sleep circuits each associated with a distributed
cache slice portion. In another embodiment, each cache slice
may include a local state machine that determines the local
process, voltage and temperature and drives the sleep settings
for that particular cache slice.

With further reference to FIG. 6, processor 400 may com-
municate with a system memory 460, e.g., via a memory bus.
In addition, by interfaces 450, connection can be made to
various off-chip components such as peripheral devices, mass
storage and so forth. While shown with this particular imple-
mentation in the embodiment of FIG. 6, the scope of the
present invention is not limited in this regard.

Referring now to FIG. 7, shown is a block diagram of a
multi-domain processor in accordance with another embodi-
ment of the present invention. As shown in the embodiment of
FIG. 7, processor 500 includes multiple domains. Specifi-
cally, a core domain 510 can include a plurality of cores
510,-510,,, a graphics domain 520 can include one or more
graphics engines, and a system agent domain 550 may further
be present. In some embodiments, system agent domain 550
may execute at an independent frequency than the core
domain and may remain powered on at all times to handle
power control events and power management such that
domains 510 and 520 can be controlled to dynamically enter
into and exit high power and low power states. Each of
domains 510 and 520 may operate at different voltage and/or
power. Note that while only shown with three domains,
understand the scope of the present invention is not limited in
this regard and additional domains can be present in other
embodiments. For example, multiple core domains may be
present each including at least one core.

In general, each core 510 may further include low level
caches in addition to various execution units and additional
processing elements. In turn, the various cores may be
coupled to each other and to a shared cache memory formed
of'a plurality of units of a last level cache (LL.C) 540,-540,,. In
various embodiments, LL.C 540 may be shared amongst the
cores and the graphics engine, as well as various media pro-
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cessing circuitry. As seen, a ring interconnect 530 thus
couples the cores together, and provides interconnection
between the cores, graphics domain 520 and system agent
circuitry 550. In one embodiment, interconnect 530 can be
part of the core domain. However in other embodiments the
ring interconnect can be of its own domain.

As further seen, system agent domain 550 may include
display controller 552 which may provide control of and an
interface to an associated display. As further seen, system
agent domain 550 may include a power control unit 555
which can include an adaptive cache memory low power
control logic 559 in accordance with an embodiment of the
present invention to dynamically and independently control
sleep circuits associated with cache memory portions with
independent optimal settings based at least in part on local
process, voltage and temperature conditions. In various
embodiments, this logic may execute the algorithms
described above in FIGS. 2-3 and 5.

As further seen in FIG. 7, processor 500 can further include
an integrated memory controller (IMC) 570 that can provide
for an interface to a system memory, such as a dynamic
random access memory (DRAM). Multiple interfaces 580,-
580, may be present to enable interconnection between the
processor and other circuitry. For example, in one embodi-
ment at least one direct media interface (DMI) interface may
be provided as well as one or more Peripheral Component
Interconnect Express (PCI Express™ (PCle™)) interfaces.
Still further, to provide for communications between other
agents such as additional processors or other circuitry, one or
more interfaces in accordance with an Intel® Quick Path
Interconnect (QPI) protocol may also be provided. Although
shown at this high level in the embodiment of FIG. 7, under-
stand the scope of the present invention is not limited in this
regard.

Referring to FIG. 8, an embodiment of a processor includ-
ing multiple cores is illustrated. Processor 1100 includes any
processor or processing device, such as a microprocessor, an
embedded processor, a digital signal processor (DSP), a net-
work processor, a handheld processor, an application proces-
sor, a co-processor, a system on a chip (SOC), or other device
to execute code. Processor 1100, in one embodiment,
includes at least two cores—cores 1101 and 1102, which may
include asymmetric cores or symmetric cores (the illustrated
embodiment). However, processor 1100 may include any
number of processing elements that may be symmetric or
asymmetric.

In one embodiment, a processing element refers to hard-
ware or logic to support a software thread. Examples of hard-
ware processing elements include: a thread unit, a thread slot,
a thread, a process unit, a context, a context unit, a logical
processor, a hardware thread, a core, and/or any other ele-
ment, which is capable of holding a state for a processor, such
as an execution state or architectural state. In other words, a
processing element, in one embodiment, refers to any hard-
ware capable of being independently associated with code,
such as a software thread, operating system, application, or
other code. A physical processor typically refers to an inte-
grated circuit, which potentially includes any number of other
processing elements, such as cores or hardware threads.

A core often refers to logic located on an integrated circuit
capable of maintaining an independent architectural state,
wherein each independently maintained architectural state is
associated with at least some dedicated execution resources.
In contrast to cores, a hardware thread typically refers to any
logic located on an integrated circuit capable of maintaining
an independent architectural state, wherein the independently
maintained architectural states share access to execution
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resources. As can be seen, when certain resources are shared
and others are dedicated to an architectural state, the line
between the nomenclature of a hardware thread and core
overlaps. Yet often, a core and a hardware thread are viewed
by an operating system as individual logical processors,
where the operating system is able to individually schedule
operations on each logical processor.

Physical processor 1100, as illustrated in FIG. 8, includes
two cores, cores 1101 and 1102. Here, cores 1101 and 1102
are considered symmetric cores, i.e., cores with the same
configurations, functional units, and/or logic. In another
embodiment, core 1101 includes an out-of-order processor
core, while core 1102 includes an in-order processor core.
However, cores 1101 and 1102 may be individually selected
from any type of core, such as a native core, a software
managed core, a core adapted to execute a native instruction
set architecture (ISA), a core adapted to execute a translated
ISA, a co-designed core, or other known core. Yet to further
the discussion, the functional units illustrated in core 1101 are
described in further detail below, as the units in core 1102
operate in a similar manner.

As depicted, core 1101 includes two hardware threads
11014 and 11015, which may also be referred to as hardware
thread slots 1101a and 11015. Therefore, software entities,
such as an operating system, in one embodiment potentially
view processor 1100 as four separate processors, i.e., four
logical processors or processing elements capable of execut-
ing four software threads concurrently. As alluded to above, a
first thread is associated with architecture state registers
11014, a second thread is associated with architecture state
registers 11015, a third thread may be associated with archi-
tecture state registers 1102a, and a fourth thread may be
associated with architecture state registers 11025. Here, each
of the architecture state registers (1101a, 11015, 11024, and
11025) may be referred to as processing elements, thread
slots, or thread units, as described above. As illustrated, archi-
tecture state registers 1101a are replicated in architecture
state registers 11015, so individual architecture states/con-
texts are capable of being stored for logical processor 1101a
and logical processor 11015. In core 1101, other smaller
resources, such as instruction pointers and renaming logic in
allocator and renamer block 1130 may also be replicated for
threads 1101a and 11015. Some resources, such as re-order
buffers in reorder/retirement unit 1135, ILTB 1120, load/
store buffers, and queues may be shared through partitioning.
Other resources, such as general purpose internal registers,
page-table base register(s), low-level data-cache and data-
TLB 1115, execution unit(s) 1140, and portions of out-of-
order unit 1135 are potentially fully shared.

Processor 1100 often includes other resources, which may
be fully shared, shared through partitioning, or dedicated
by/to processing elements. In FIG. 8, an embodiment of a
purely exemplary processor with illustrative logical units/
resources of a processor is illustrated. Note that a processor
may include, or omit, any of these functional units, as well as
include any other known functional units, logic, or firmware
not depicted. As illustrated, core 1101 includes a simplified,
representative out-of-order (OOQO) processor core. But an
in-order processor may be utilized in different embodiments.
The OOO core includes a branch target bufter 1120 to predict
branches to be executed/taken and an instruction-translation
buffer (I-TLB) 1120 to store address translation entries for
instructions.

Core 1101 further includes decode module 1125 coupled to
fetch unit 1120 to decode fetched elements. Fetch logic, in
one embodiment, includes individual sequencers associated
with thread slots 1101a, 11015, respectively. Usually core
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1101 is associated with a first ISA, which defines/specifies
instructions executable on processor 1100. Often machine
code instructions that are part of the first ISA include a portion
of the instruction (referred to as an opcode), which refer-
ences/specifies an instruction or operation to be performed.
Decode logic 1125 includes circuitry that recognizes these
instructions from their opcodes and passes the decoded
instructions on in the pipeline for processing as defined by the
first ISA. For example, decoders 1125, in one embodiment,
include logic designed or adapted to recognize specific
instructions, such as transactional instruction. As a result of
the recognition by decoders 1125, the architecture or core
1101 takes specific, predefined actions to perform tasks asso-
ciated with the appropriate instruction. It is important to note
that any of the tasks, blocks, operations, and methods
described herein may be performed in response to a single or
multiple instructions; some of which may be new or old
instructions.

In one example, allocator and renamer block 1130 includes
an allocator to reserve resources, such as register files to store
instruction processing results. However, threads 1101a and
11015 are potentially capable of out-of-order execution,
where allocator and renamer block 1130 also reserves other
resources, such as reorder buffers to track instruction results.
Unit 1130 may also include a register renamer to rename
program/instruction reference registers to other registers
internal to processor 1100. Reorder/retirement unit 1135
includes components, such as the reorder buffers mentioned
above, load buffers, and store buffers, to support out-of-order
execution and later in-order retirement of instructions
executed out-of-order.

Scheduler and execution unit(s) block 1140, in one
embodiment, includes a scheduler unit to schedule instruc-
tions/operation on execution units. For example, a floating
point instruction is scheduled on a port of an execution unit
that has an available floating point execution unit. Register
files associated with the execution units are also included to
store information instruction processing results. Exemplary
execution units include a floating point execution unit, an
integer execution unit, a jump execution unit, a load execution
unit, a store execution unit, and other known execution units.

Lower level data cache and data translation buffer (D-TLB)
1150 are coupled to execution unit(s) 1140. The data cache is
to store recently used/operated on elements, such as data
operands, which are potentially held in memory coherency
states. The D-TLB is to store recent virtual/linear to physical
address translations. As a specific example, a processor may
include a page table structure to break physical memory into
a plurality of virtual pages

Here, cores 1101 and 1102 share access to higher-level or
further-out cache 1110, which is to cache recently fetched
elements. Note that higher-level or further-out refers to cache
levels increasing or getting further away from the execution
unit(s). In one embodiment, higher-level cache 1110 is a
last-level data cache—Iast cache in the memory hierarchy on
processor 1100—such as a second or third level data cache.
However, higher level cache 1110 is not so limited, as it may
be associated with or includes an instruction cache. A trace
cache—a type of instruction cache—instead may be coupled
after decoder 1125 to store recently decoded traces.

In the depicted configuration, processor 1100 also includes
bus interface module 1105 and a power controller 1160,
which may perform power sharing control in accordance with
anembodiment of the present invention. Historically, control-
ler 1170 has been included in a computing system external to
processor 1100. In this scenario, bus interface 1105 is to
communicate with devices external to processor 1100, such
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as system memory 1175, a chipset (often including a memory
controller hub to connect to memory 1175 and an 1/O con-
troller hub to connect peripheral devices), a memory control-
ler hub, a northbridge, or other integrated circuit. And in this
scenario, bus 1105 may include any known interconnect, such
as multi-drop bus, a point-to-point interconnect, a serial inter-
connect, a parallel bus, a coherent (e.g. cache coherent) bus,
a layered protocol architecture, a differential bus, and a GTL
bus.

Memory 1175 may be dedicated to processor 1100 or
shared with other devices in a system. Common examples of
types of memory 1175 include DRAM, SRAM, non-volatile
memory (NV memory), and other known storage devices.
Note that device 1180 may include a graphic accelerator,
processor or card coupled to a memory controller hub, data
storage coupled to an I/O controller hub, a wireless trans-
ceiver, a flash device, an audio controller, a network control-
ler, or other known device.

Note however, that in the depicted embodiment, the con-
troller 1170 is illustrated as part of processor 1100. Recently,
as more logic and devices are being integrated on a single die,
such as SOC, each of these devices may be incorporated on
processor 1100. For example in one embodiment, memory
controller hub 1170 is on the same package and/or die with
processor 1100. Here, a portion of the core (an on-core por-
tion) includes one or more controller(s) 1170 for interfacing
with other devices such as memory 1175 or a graphics device
1180. The configuration including an interconnect and con-
trollers for interfacing with such devices is often referred to as
an on-core (or un-core configuration). As an example, bus
interface 1105 includes a ring interconnect with a memory
controller for interfacing with memory 1175 and a graphics
controller for interfacing with graphics processor 1180. Yet,
in the SOC environment, even more devices, such as the
network interface, co-processors, memory 1175, graphics
processor 1180, and any other known computer devices/in-
terface may be integrated on a single die or integrated circuit
to provide small form factor with high functionality and low
power consumption.

Embodiments may be implemented in many different sys-
tem types. Referring now to FIG. 9, shown is a block diagram
of'a system in accordance with an embodiment of the present
invention. As shown in FIG. 9, multiprocessor system 600 is
a point-to-point interconnect system, and includes a first pro-
cessor 670 and a second processor 680 coupled via a point-
to-point interconnect 650. As shown in FIG. 9, each of pro-
cessors 670 and 680 may be multicore processors, including
first and second processor cores (i.e., processor cores 674a
and 6745 and processor cores 684a and 684b), although
potentially many more cores may be present in the proces-
sors. Each of the processors can include a PCU or other logic
to independently and dynamically control low power states
for a distributed cache memory, as described herein.

Still referring to FIG. 9, first processor 670 further includes
amemory controller hub (MCH) 672 and point-to-point (P-P)
interfaces 676 and 678. Similarly, second processor 680
includes a MCH 682 and P-P interfaces 686 and 688. As
shown in FIG. 9, MCH’s 672 and 682 couple the processors
to respective memories, namely a memory 632 and a memory
634, which may be portions of system memory (e.g., DRAM)
locally attached to the respective processors. First processor
670 and second processor 680 may be coupled to a chipset
690 via P-P interconnects 662 and 664, respectively. As
shown in FIG. 8, chipset 690 includes P-P interfaces 694 and
698.

Furthermore, chipset 690 includes an interface 692 to
couple chipset 690 with a high performance graphics engine
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638, by a P-P interconnect 639. In turn, chipset 690 may be
coupled to a first bus 616 via an interface 696. As shown in
FIG. 9, various input/output (I/O) devices 614 may be
coupled to first bus 616, along with a bus bridge 618 which
couples first bus 616 to a second bus 620. Various devices may
be coupled to second bus 620 including, for example, a key-
board/mouse 622, communication devices 626 and a data
storage unit 628 such as a disk drive or other mass storage
device which may include code 630, in one embodiment.
Further, an audio /O 624 may be coupled to second bus 620.
Embodiments can be incorporated into other types of systems
including mobile devices such as a smart cellular telephone,
tablet computer, netbook, Ultrabook™, or so forth.

Referring now to FIG. 10, shown is a block diagram of a
processor in accordance with another embodiment of the
present invention. In the embodiment of FIG. 10, processor
1000 may be a system on a chip (SoC) including multiple
domains, each of which may be controlled to operate at an
independent operating voltage and operating frequency. As a
specific illustrative example, processor 1000 may be an
Intel® Architecture Core™-based processor such as an i3, i5,
17 or another such processor available from Intel Corporation,
Santa Clara, Calif. However, other low power processors such
as available from Advanced Micro Devices, Inc. (AMD) of
Sunnyvale, Calif., an ARM-based design from ARM Hold-
ings, Ltd. or customer thereof or a MIPS-based design from
MIPS Technologies, Inc. of Sunnyvale, Calif., or their licens-
ees or adopters may instead be present in other embodiments
such as an Apple AS processor, a Qualcomm Snapdragon
processor, or Texas Instruments OMAP processor. Such SoC
may be used in a low power system such as a smartphone,
tablet computer, Ultrabook™ computer or other portable
computing device.

In the high level view shown in FIG. 10, processor 1000
includes a plurality of core units 1010,-1010,,. Each core unit
may include one or more processor cores, one or more cache
memories and other circuitry. Each core unit 1010 may sup-
port one or more instructions sets (e.g., the x86 instruction set
(with some extensions that have been added with newer ver-
sions); the MIPS instruction set of MIPS Technologies of
Sunnyvale, Calif.; the ARM instruction set (with optional
additional extensions such as NEON) of ARM Holdings of
Sunnyvale, Calif.) or other instruction set or combinations
thereof. Note that some of the core units may be heteroge-
neous resources (e.g., of a different design). In addition, each
such core may be coupled to a cache memory which in an
embodiment may be a shared level (L2) cache memory. A
non-volatile storage 1030 may be used to store various pro-
gram and other data. For example, this storage may be used to
store at least portions of microcode, boot information such as
a BIOS, other system software or so forth.

Each core unit 1010 may also include an interface such as
a bus interface unit to enable interconnection to additional
circuitry of the processor. In an embodiment, each core unit
1010 couples to a coherent fabric that may act as a primary
cache coherent on-die interconnect that in turn couples to a
memory controller 1035. In turn, memory controller 1035
controls communications with a memory such as a dynamic
random access memory (DRAM) (not shown for ease of
illustration in FIG. 10).

In addition to core units, additional processing engines are
present within the processor, including at least one graphics
unit 1020 which may include one or more graphics process-
ing units (GPUs) to perform graphics processing as well as to
possibly execute general purpose operations on the graphics
processor (so-called GPGPU operation). In addition, at least
one image signal processor 1025 may be present. Signal
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processor 1025 may be configured to process incoming image
data received from one or more capture devices, either inter-
nal to the SoC or off-chip. Other accelerators also may be
present. In the illustration of FIG. 10, a video coder 1050 may
perform coding operations including encoding and decoding
for video information, e.g., providing hardware acceleration
support for high definition video content. A display controller
1055 further may be provided to accelerate display operations
including providing support for internal and external displays
of a system. In addition, a security processor 1045 may be
present to perform security operations such as secure boot
operations, various cryptography operations and so forth.

Each of the units may have its power consumption con-
trolled via a power manager 1040. Power manager 1040
includes control logic to perform the independent and
dynamic low power control for a distributed cache memory as
described herein.

In some embodiments, SoC 1000 may further include a
non-coherent fabric coupled to the coherent fabric to which
various peripheral devices may couple. One or more inter-
faces 10604-10604 enable communication with one or more
off-chip devices. Such communications may be according to
a variety of communication protocols such as PCle™ GPIO,
USB, 12C, UART, MIPI, SDIO, DDR, SPI, HDMI, among
other types of communication protocols. Although shown at
this high level in the embodiment of FIG. 10, understand the
scope of the present invention is not limited in this regard.

The following examples pertain to further embodiments.

In one example, a processor for controlling a voltage for a
cache memory comprises a plurality of cores each to inde-
pendently execute instructions, a cache memory including a
plurality of portions distributed across a die of the processor,
aplurality of sleep circuits each coupled to one of the plurality
of'portions of the cache memory, and at least one sleep control
logic coupled to the plurality of portions of the cache memory
to dynamically determine a sleep setting independently for
each of the plurality of sleep circuits, where the sleep control
logic is to enable the corresponding sleep circuit to maintain
the corresponding cache memory portion at a retention volt-
age.

In an example, the sleep control logic is to dynamically
determine the sleep setting based at least in part on a process,
voltage, and temperature associated with the corresponding
portion of the cache memory.

In an example, the sleep control logic is to dynamically
determine the retention voltage for the corresponding portion
of'the cache memory based at least in part on the sleep setting.

In an example, the processor further comprises a power
controller to control power consumption of the processor,
where the power controller is to disable a first sleep circuit
when a first portion of the cache memory coupled to the first
sleep circuit is active.

In an example, the processor further comprises a plurality
of process sensors associated with the first portion of the
cache memory, where the sleep control logic is to dynami-
cally determine the sleep setting for the first sleep circuit
based at least in part on information from the plurality of
process sensors.

In an example, the processor further comprises a plurality
of thermal sensors associated with the first portion of the
cache memory, where the sleep control logic is to dynami-
cally determine the sleep setting for the first sleep circuit
based at least in part on information from the plurality of
thermal sensors.
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In an example, the sleep control logic is to iteratively
calculate a retention voltage and an operating voltage for a
corresponding portion of the cache memory until an optimal
sleep setting is determined.

In an example, the processor further comprises a plurality
of'sleep control logics each coupled to one of the plurality of
portions of the cache memory to dynamically determine the
sleep setting independently for the corresponding portion of
the cache memory.

Note that the above processor can be implemented using
various means.

In an example, the processor comprises a system on a chip
(SoC) incorporated in a user equipment touch-enabled
device.

In another example, a system comprises a display and a
memory, and includes the processor of one or more of the
above examples.

In one example, a method for controlling a voltage for a
cache memory comprises calculating a retention voltage for a
first portion of a cache memory of a processor based at least
in part on a temperature and an operating voltage associated
with the first portion of the cache memory, where the reten-
tion voltage dynamically changes during operation of the
processor, determining a sleep setting based on the retention
voltage, and controlling a sleep circuit coupled to the first
portion of the cache memory using the sleep setting to enable
the first portion of the cache memory to be maintained in a low
power state at a voltage level above the retention voltage.

In an example, calculating the retention voltage comprises
receiving test information from a plurality of test devices
associated with the first portion of the cache memory, and
determining a process corner for the first portion of the cache
memory based on the test information.

In an example, calculating the retention voltage further
comprises receiving thermal information from a plurality of
thermal sensors associated with a plurality of cores of the
processor in proximity to the first portion of the cache
memory, and determining a local temperature for the first
portion of the cache memory based on the thermal informa-
tion.

In an example, calculating the retention voltage further
comprises dynamically determining the retention voltage
using the process corner, the local temperature, and the oper-
ating voltage associated with the first portion of the cache
memory.

In an example, the method further comprises controlling
the sleep circuit to be disabled when the first portion of the
cache memory is in an active state.

In an example, the method further comprises calculating
the retention voltage for each of a plurality of portions of the
cache memory independently, determining a sleep setting for
each of the plurality of portions of the cache memory inde-
pendently, and controlling a corresponding sleep circuit for
each of the plurality of portions of the cache memory inde-
pendently using the corresponding sleep setting.

In an example, the method further comprises iteratively
adjusting the sleep setting in a first direction while an oper-
ating voltage of the first portion of the cache memory exceeds
a threshold voltage.

In an example, the method further comprises determining
if the operating voltage of the first portion of the cache
memory exceeds the retention voltage by a threshold value,
and if so, adjusting the sleep setting in a first direction.

In an example, the method further comprises adjusting the
sleep setting in a second direction if the operating voltage is
less than a sum of the retention voltage and the threshold
value.
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In another example, a computer readable medium includes
instructions to perform the method of any of the above
examples.

In another example, an apparatus comprises means for
performing the method of any one of the above examples.

In one example, a system for controlling a cache memory
voltage comprises a multicore processor including a plurality
of tiles, each tile including a core, a portion of a cache
memory, a sleep circuit and an agent to communicate between
the tile and a power controller of the multicore processor,
where the power controller is to dynamically determine a
sleep setting independently for the sleep circuit of each of the
tiles and to communicate the independent sleep setting to the
agent of each of the tiles, and the agent is to provide the
independent sleep setting to the sleep circuit to maintain the
corresponding cache memory portion at a retention voltage.

In an example, a first tile of the plurality of tiles is to
communicate thermal information and voltage information of
the first tile to the power controller, and the power controller
is to dynamically determine the independent sleep setting for
the first tile based at least in part on a process associated with
the corresponding cache memory portion and the thermal
information and the voltage information.

In an example, the sleep circuit of each of the plurality of
tiles comprises a selector to provide the independent sleep
setting or a static setting to a switch circuit of the sleep circuit
to enable the sleep circuit to maintain the corresponding
cache memory portion at the retention voltage.

In an example, the power controller is to iteratively calcu-
late a retention voltage and an operating voltage for a corre-
sponding portion of the cache memory until an optimal sleep
setting is determined.

In an example, the power controller is to adjust the sleep
setting in a first direction while the operating voltage exceeds
a threshold voltage, determine if the operating voltage
exceeds the retention voltage by a threshold value and if so,
adjust the sleep setting in the first direction, and adjust the
sleep setting in a second direction if the operating voltage is
less than a sum of the retention voltage and the threshold
value.

Embodiments may be used in many different types of
systems. For example, in one embodiment a communication
device can be arranged to perform the various methods and
techniques described herein. Of course, the scope of the
present invention is not limited to a communication device,
and instead other embodiments can be directed to other types
of apparatus for processing instructions, or one or more
machine readable media including instructions that in
response to being executed on a computing device, cause the
device to carry out one or more of the methods and techniques
described herein.

Embodiments may be implemented in code and may be
stored on a non-transitory storage medium having stored
thereon instructions which can be used to program a system to
perform the instructions. The storage medium may include,
but is not limited to, any type of disk including floppy disks,
optical disks, solid state drives (SSDs), compact disk read-
only memories (CD-ROMs), compact disk rewritables (CD-
RWs), and magneto-optical disks, semiconductor devices
such as read-only memories (ROMs), random access memo-
ries (RAMs) such as dynamic random access memories
(DRAMs), static random access memories (SRAMs), eras-
able programmable read-only memories (EPROMs), flash
memories, electrically erasable programmable read-only
memories (EEPROMs), magnetic or optical cards, or any
other type of media suitable for storing electronic instruc-
tions.
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While the present invention has been described with
respect to a limited number of embodiments, those skilled in
the art will appreciate numerous modifications and variations
therefrom. It is intended that the appended claims cover all
such modifications and variations as fall within the true spirit
and scope of this present invention.

What is claimed is:

1. A processor comprising:

a plurality of cores each to independently execute instruc-

tions;

a cache memory including a plurality of portions distrib-

uted across a die of the processor;

a plurality of sleep circuits each coupled to one of the

plurality of portions of the cache memory; and

at least one sleep control logic coupled to the plurality of

portions of the cache memory to dynamically determine
a sleep setting independently for each of the plurality of
sleep circuits based at least in part on a process, voltage,
and temperature associated with the corresponding por-
tion of the cache memory and dynamically determine a
retention voltage for the corresponding portion of the
cache memory based at least in part on the sleep setting,
wherein the at least one sleep control logic is to enable
the corresponding sleep circuit to maintain the corre-
sponding cache memory portion at the retention voltage.
2. The processor of claim 1, further comprising a power
controller to control power consumption of the processor,
wherein the power controller is to disable a first sleep circuit
when a first portion of the cache memory coupled to the first
sleep circuit is active.
3. The processor of claim 2, further comprising a plurality
of process sensors associated with the first portion of the
cache memory.
4. The processor of claim 3, further comprising a plurality
of thermal sensors associated with the first portion of the
cache memory.
5. The processor of claim 1, wherein the at least one sleep
control logic is to iteratively calculate a retention voltage and
an operating voltage for a corresponding portion of the cache
memory until an optimal sleep setting is determined.
6. The processor of claim 1, further comprising a plurality
of'sleep control logics each coupled to one of the plurality of
portions of the cache memory to dynamically determine the
sleep setting independently for the corresponding portion of
the cache memory.
7. A method comprising:
dynamically calculating a retention voltage for a first por-
tion of a cache memory of a processor based at least in
part on a process corner, a temperature and an operating
voltage associated with the first portion of the cache
memory, wherein the retention voltage dynamically
changes during operation of the processor;

dynamically determining a sleep setting based on the reten-
tion voltage; and

controlling a sleep circuit coupled to the first portion of the

cache memory using the sleep setting to enable the first
portion of the cache memory to be maintained in a low
power state at a voltage level above the retention voltage.

8. The method of claim 7, wherein dynamically calculating
the retention voltage comprises:

receiving test information from a plurality of test devices

associated with the first portion of the cache memory;
and

determining the process corner for the first portion of the

cache memory based on the test information.

9. The method of claim 8, wherein calculating the retention
voltage further comprises:

w

15

20

25

30

35

40

45

50

55

60

65

20

receiving thermal information from a plurality of thermal
sensors associated with a plurality of cores of the pro-
cessor in proximity to the first portion of the cache
memory; and

determining a local temperature for the first portion of the

cache memory based on the thermal information.

10. The method of claim 7, further comprising controlling
the sleep circuit to be disabled when the first portion of the
cache memory is in an active state.

11. The method of claim 7, further comprising:

calculating the retention voltage for each of a plurality of

portions of the cache memory independently;
determining a sleep setting for each of the plurality of
portions of the cache memory independently; and
controlling a corresponding sleep circuit for each of the
plurality of portions of the cache memory independently
using the corresponding sleep setting.

12. The method of claim 7, further comprising iteratively
adjusting the sleep setting in a first direction while an oper-
ating voltage of the first portion of the cache memory exceeds
a threshold voltage.

13. The method of claim 12, further comprising:

determining if the operating voltage of the first portion of

the cache memory exceeds the retention voltage by a
threshold value; and

if so, adjusting the sleep setting in the first direction.

14. The method of claim 13, further comprising adjusting
the sleep setting in a second direction if the operating voltage
is less than a sum of the retention voltage and the threshold
value.

15. A system comprising:

amulticore processor including a plurality oftiles, each tile

including a core, a portion of a cache memory, a sleep
circuit and an agent to communicate between the tile and
a power controller of the multicore processor, wherein
the power controller is to dynamically determine a sleep
setting independently for the sleep circuit of each of the
tiles and to communicate the independent sleep setting
to the agent of each of the tiles, and the agent is to
provide the independent sleep setting to the sleep circuit
to maintain the corresponding cache memory portion at
a retention voltage, wherein the sleep circuit of each of
the plurality of tiles comprises a selector to provide the
independent sleep setting or a static setting to a switch
circuit of the sleep circuit to enable the sleep circuit to
maintain the corresponding cache memory portion at the
retention voltage.

16. The system of claim 15, wherein a first tile of the
plurality of tiles is to communicate thermal information and
voltage information of the first tile to the power controller,
and the power controller is to dynamically determine the
independent sleep setting for the first tile based at least in part
on a process associated with the corresponding cache
memory portion and the thermal information and the voltage
information.

17. The system of claim 15, wherein the power controlleris
to iteratively calculate a retention voltage and an operating
voltage for a corresponding portion of the cache memory until
an optimal sleep setting is determined.

18. The system of claim 17, wherein the power controlleris
to adjust the sleep setting in a first direction while the oper-
ating voltage exceeds a threshold voltage, determine if the
operating voltage exceeds the retention voltage by a threshold
value and if so, adjust the sleep setting in the first direction,
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and adjust the sleep setting in a second direction if the oper-
ating voltage is less than a sum of the retention voltage and the
threshold value.
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